GENERAL MATHEMATICS MODEL CLASS 10

Q-1 Choose the correct option.

Time Allowed: 20 Minutes

SECTION – A

Marks: 15

1. Which of the following algebraic expressions is a polynomial?				
	(a) $y^2 + 3y + 2$	(b) $\sqrt{y^2 + 3y + 2}$	(c) $y^2 + \frac{3}{y} + 2$	(d) $\sqrt{y^2 + 3y} + 2$
2.	The value of $x^3 - x^2 - (a) -47$	-2x-5 at $x=-3$ is: (b) -35	(c) -17	(d) 19
3.	$x^{3} + 64 =$ (a) $(x-4)(x^{2} + 4x + 4x)(x^{2} + 4$	16) 16)	(b) $(x-4)(x^2-4x+3)(x^2-$	16) 16)
4.	Zero of the polynomia $(a) -4$	al $p(y) = y^2 - 7y + 12$ (b) -3	is: (c) 4	(d) 7
5.	L.C.M of $(y-4)^2$ and	d $v^2 - 16$ is:		
	(a) $(y-4)$	(b) $(y+4)$	(c) $(y+4)(y-4)$	(d) $(y-4)^2(y+4)$
6.	The solution set of 5 (a) $\left\{-\frac{26}{5}\right\}$	y-3 = -23 is: (b) $\{-4\}$	(c) {4}	(d) $\left\{\frac{26}{5}\right\}$
7.	$x \le y$ means: (a) x is less than or e (c) x is less than y	equal to y	(b) x is greater than(d) x is greater than	or equal to y y
8.	The quadratic equation (a) $x^2 - \frac{2}{x} + 5 = 0$	on in the following is: (b) $x^2 - 2x + \frac{5}{x} = 0$	(c) $x^2 - 2x + 5 = 0$	(d) $\sqrt{x^2 - 2x + 5} = 0$
9.	The scalar matrix in t (a) $\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$	he following is: (b) $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$	$(c)\begin{bmatrix} 0 & 3\\ 3 & 0 \end{bmatrix}$	$(d) \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$
10. The determinant of matrix $A = \begin{bmatrix} 4 & -3 \\ 5 & -2 \end{bmatrix}$ is:				
	(a) -23	(b) -7	(c) 7	(d) 23
11.	The adjoint of the matrix (a) $\begin{bmatrix} 3 & -4 \\ 6 & 1 \end{bmatrix}$	trix $\begin{bmatrix} 1 & -4 \\ 6 & 3 \end{bmatrix}$ is: (b) $\begin{bmatrix} 1 & 4 \\ -6 & 3 \end{bmatrix}$	$(c)\begin{bmatrix}1&6\\-4&3\end{bmatrix}$	(d) $\begin{bmatrix} 3 & 4 \\ -6 & 1 \end{bmatrix}$
12.	If the sum of measures of two angles is 90°, then these angles are called:(a) adjacent angles(b) supplementary angles(c) complementary angles(d) vertically opposite angles			
13.	The length of one of t (a) $2\sqrt{3} \ cm^2$	the sides of an equilate (b) $8\sqrt{3} \ cm^2$	ral triangle is $8cm$. Its (c) $16\sqrt{3} \ cm^2$	area is: (d) $64\sqrt{3} \ cm^2$
14.	The area of a semi-cir (a) $7.85cm^2$	ccle having a radius of (b) 15.71 <i>cm</i> ²	5 <i>cm</i> is: (c) 39.27 <i>cm</i> ²	(d) 78.54 <i>cm</i> ²
15.	The point which lies it (a) $(2,5)$	in the quadrant II is: (b) $(2,-5)$	(c) (-2,-5)	(d) $(-2,5)$

SECTION – B

Q-2 Answer any NINE parts. Each part carries FOUR marks.

- i. Reduce the expression $\frac{x^2 6x + 8}{x^2 4}$ to its lowest terms.
- ii. Find the value of $a^2 + b^2$ when (a+b) = -3 and (a-b) = 6.
- iii. Factorize the expression $x^4 12x^2 + 4$.
- iv. Find the square root of $25x^2 60xy + 36y^2$ by division method.
- v. Find the solution set of the inequality $6 \le y+3 < 9$, where $y \in R$. Depict it on the real number line.
- vi. Solve the quadratic equation $4x^2 24x + 20 = 0$ by completing square.
- vii. The product of two consecutive integers is 56. Find the integers.
- viii. Solve the following system of linear equations by Cramer's Rule.

$$3x + 2y = 0$$
$$4x - 5y = -23$$

- ix. Angles of a triangle are in the ratio 1:2:3. Find their measures.
- x. Construct a rectangle ABCD when $m\overline{AB} = 5cm$ and $m\overline{BC} = 4cm$.
- xi. In a right-angled triangle ABC, $m \angle A = 90^\circ$, $m \overline{BC} = 13$ and $m \overline{AB} = 5$. Find $m \overline{AC}$.
- xii. Find the total cost of constructing a stage for a function at Rs. 2200 per m^3 , if the stage is $7m \log, 4m$ wide and 0.8m high.

SECTION – C Marks: 24

Note: Attempt any THREE questions. All questions carry equal marks.

Q-3 Factorize the expression $x^3 + 2x^2 - 3x - 4$ by Factor Theorem.

Q-4 Verify
$$(AB)^{-1} = B^{-1}A^{-1}$$
 for the matrices: $A = \begin{bmatrix} 3 & -2 \\ 5 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 4 & -3 \\ 6 & 1 \end{bmatrix}$.

- Q-5 Construct a $\triangle ABC$ with $m\overline{AB} = 6cm$, $m \angle A = 60^{\circ}$ and $m \angle B = 75^{\circ}$. Also draw its medians and verify their concurrency.
- Q-6 Use distance formula to show that the points A(5,3), B(5,2) and C(8,2) form a right angled triangle.