MARKING SCHEME OF MODEL PAPER BIOLOGY CLASS XI

Section: A

Marks: 18

Question	Correct Answer	Кеу
1	Mg++	A
2	Mental retardation	A
3	Four polypeptide chains	С
4	Cytosine – Guanine	В
5	The first enzyme in the pathway	В
6	Chlorophyll a	A
7	Oxygen	С
8	Small pox	A
9	Crystal violet	A
10	Production of vitamins	В
11	Yeast	A
12	Bryophytes	D
13	Reptiles	D
14	Sieve tube cells	A
15	Pfr.	В
16	Helicobacter pylori	D
17	pulmonary artery.	В
18	Ankylosing spondylitis	С

Note: Each correct MCQ carries **ONE** mark

SECTION-B RRQs

MARKING RUBRIC

Q.1	Briefly describe Golgi bodies with respect to its structure and functions.	
i.	Structure:	
Possible answer	Golgi complex consists of units called dictyosomes. Each dictyosome is formed of bundles of curved and flattened cisternae, associated tubules and secretary vesicles. Dictyosome has two distinct faces. The proximal or forming face present close to nucleus and a distal or maturing face located towards the cell membrane. Functions: Golgi bodies helps in the <u>storage, modification</u> and <u>packaging</u> of secretory products. In some cases polysaccharides may be <u>synthesized in Golgi apparatus</u> . Secretary vesicles produced by Golgi apparatus may play an <u>important role in adding surface area to the plasma membrane.</u>	
	Note: Only two correct functions of Golgi bodies are required	
Marking	Correct structure of Golgi bodies carries TWO marks.	
hints	Correct functions of Golgi bodies carries TWO marks. Only 02 correct functions	
	required. 2+1+1= 4 Total marks	

ii.	Explain structure of RNA with the help of diagram.
Possible	Structure:
answer	RNA is a polymer of nucleotides. It is a single polynucleotide strand. The sugar present in RNA is ribose. RNA is formed of four different types of nucleotides. These nucleotides are given names after the base present in them, they are adenine ribonucleotide, guanine ribonucleotide, cytosine ribonucleotide and uracil ribonucleotide.
Marking bints	TWO marks for correct description of structure of RNA.
nints	2+2= 4 Total marks

iii.	Competitive and non-competitive inhil	pitors are two kinds of inhibitors. How
Possible answer	these inhibitors are different from each other?	
	Ans:	
	Competitive inhibitors	Non-competitive inhibitors
	 Has a similar structure to the normal substrate molecule and it can fit into the active site of the enzyme It competes with the substrate for the active site so the reaction is slower e.g. sulphonamide to an antibacterial drugs which act as competitive inhibitors. A competitive inhibitor is reversible 	 It is quite different ins structure from the substrate molecule and does not fit into the active site. It binds to another part of the enzyme molecule changing the shape of the whole enzyme including the active site and no longer bind substrate molecules. Poisons like cyanide, heavy metal ions and some insecticides are all non-competitive inhibitors.
Marking	2 marks for correct difference between comp	petitive and non-competitive inhibitors =
nints	2+2= 4 Total marks	
iv. Docciblo	Relate visible spectrum to the absorptio	on spectra of photosynthetic pigments.
answer	A portion of solar radiation that ranges from	om about <u>390 to 760 nm</u> in wavelength is
	termed as visible spectrum. Wherea	as The amount of <u>light absorbed</u> by
	Most important pigments in photosynth	ectrum is termed as absorption spectrum. esis are chlorophyll a, chlorophyll b and
	carotenoids. The chlorophyll chiefly absor	b light in violet blue (390nm- 460nm) and
	red parts (630nm-700nm) of the visible	spectrum. The carotenoids absorb light
	between 430-470nm of light spectrum an Note: The underline words/sentences must c	d transfer it to chlorophyll a molecule. onsider in student response.
Marking hints	Correct description carries 4 marks	
V.	Write any FOUR control measures a	against the transmissions of HIV.
Possible	Ans: 1. Proper sterilization methods shoul	d be used.
	2. Disposable needles should be	used for procedures such as acupuncture
	tattooing, ear piercing etc.	an in case of blood transfusion
	4. Get professional help for terminati	ng the drug habit.
Marking	ONE mark of each given correct control mos	sures against the transmissions of HIV
hints	Only FOUR required.	sures against the transmissions of the.
		1+1+1+1= 4 Total marks

vi.	List FOUR chemical methods to control harmful bacteria.	
Possible	Ans:	
answer	1. Phenolics are used against Gram positive bacteria.	
	2. Chlorine is used to disinfect drinking water and pools.	
	3. Tincture iodine is used as antiseptics.	
	4. Ethylene oxide is used to kill all microbes and endospores.	
Marking	ONE mark of each given correct chemical methods to control harmful bacteria. Only	
nints	1+1+1= 4 Total marks	
vii.	Briefly explain the role played by fungi and algae in lichens.	
Possible	Ans:	
answer	Lichen is a symbiotic association between fungi and algae. It is an example of	
	mutualism where both the partners get benefits from each other.	
	Role of fungi: Fungal hyprae penetrate the cell wall of algal partner and transfer	
	to produce metabolic substances that it does not produce independently	
	Bole of algae: Algae is photosynthetic partner. It produces food by the process of	
	nhotosynthesis and provide it to fungal partner	
Marking	TWO marks of Role of Fungi. TWO marks of Role of Algae.	
	2+2= 4 Total marks	
hints	2+2= 4 Total marks	
hints viii.	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position?	
hints viii. Possible answer	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans:	
hints viii. Possible answer	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the	
hints viii. Possible answer	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of	
hints viii. Possible answer	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose	
hints viii. Possible answer	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches	
hints viii. Possible answer	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this	
hints viii. Possible answer	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger.	
hints viii. Possible answer	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses	
hints viii. Possible answer Marking	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses Racemose: 2 marks. Cymose: 2 marks	
hints viii. Possible answer Marking hints	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses Racemose: 2 marks, Cymose: 2 marks	
hints viii. Possible answer Marking hints	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses Racemose: 2 marks 2+2= 4 Total marks	
hints viii. Possible answer Marking hints	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses Racemose: 2 marks, Cymose: 2 marks 2+2= 4 Total marks	
hints viii. Possible answer Marking hints	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses Racemose: 2 marks, Cymose: 2 marks 2+2= 4 Total marks	
hints viii. Possible answer Marking hints	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses Racemose: 2 marks, Cymose: 2 marks 2+2= 4 Total marks	
hints viii. Possible answer Marking hints	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses Racemose: 2 marks, Cymose: 2 marks 2+2= 4 Total marks	
hints viii. Possible answer Marking hints	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses Racemose: 2 marks, Cymose: 2 marks 2+2= 4 Total marks	
hints viii. Possible answer Marking hints	2+2= 4 Total marks How racemose inflorescence is different from cymose inflorescence with reference to flower position? Ans: In racemose inflorescence the main axis is continue to grow indefinitely until the last flower is formed at its apex. The oldest flowers are towards the base of inflorescence and the youngest ones toward the apex. Whereas in cymose inflorescence the main axis soon ends in a flower. One, two or more branches develop below the terminal flower each ending in a flower like the main axis. In this case the terminal flower is the oldest and the lateral flowers are younger. Note: Underlines sentences must consider in students responses Racemose: 2 marks, Cymose: 2 marks 2+2= 4 Total marks	

ix.	Differentiate between acoelomate and	pseudocoelomate. Give ONE example
Possible	of each.	
answer	Ans:	
	Accelomete	Decude coolemate
	Accelomate	These animals in which hody cavity is
	mose animals which do not possess body	procent between body wall and alimentary
	these animals space between body wall	canal but the cavity is not formed by
	and alimentary canal is filled with a loose	mesoderm are called pseudocoelomates.
	cellular tissue called mesenchyma or	
	parenchyma. These tissues support and	
	protect the internal organs. Acoelomates	
	do not have much developed body system	
	Example: Animals of phylum	Example: Aschelminthes are included in
	platyhelminthes are classified as	this group.
	acoelomates.	
Marking	ONE mark for each correct difference betwee	an appalemente and populationalemente 111
hints	marks	en accelonnale and pseudoccelonnale. 1+1
111115	ONE mark for each correct each example of a	accelomate and pseudocoelomate 1+1
	marks	
		1+1+1=4 Total marks
х.	Briefly explain how annual are formed	?
Possible		
answer	Ans:	d during and the second includes a first the
	Annual ring is simply a layer of wood produce	that grow at the and of proving season. Each tree
	relatively pale early wood that grew at the st	art of this year. One appual ring is composed
	of a ring of early wood and a ring of late woo	d
	Note: Underline words/sentences must cons	<u>uider in student response</u>
Marking	Correct description carries 4 marks	. F
hints		
xi.	Write down the role of parietal cells in	the structure of stomach.
Possible answer	Ans:	
	Parietal cells secrets hydrochloric acid and in	trinsic factor.
	i Role of HCl	
	Parietal cells contain a H ions ATPase. This tra	nsmembrane protein secretes H ions by active
	transport using the energy of ATP. The conce	entration of hydrogen ions in the gastric juice
	can be as high as 0.15M giving gastric juice a	pH someone less than 1.

Intrinsic factor is a protein that binds ingested vitamin B12 and enables it to be absorbed by the intestine in intact form.Marking hintsRole of HCI: 2 marks and role of intrinsic factors:2marksXii Possible answerDefine cardiac cycle and briefly explain phases of heart beat.Ans: Cardiac cycle: One contraction and one relaxation is called as cardiac cycle. Contraction of heart is called systole and relaxation is diastole. One complete cycle takes 0.8 seconds.Phases of heart beat: In first phase called diastole blood flows all the four Chambers passively. In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood. In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute.Marking hintsCardiac cycle:1 markEach phase of heart beat teach phase
by the intestine in intact form.Marking hintsRole of HCI: 2 marks and role of intrinsic factors:2marksxiii Possible answerDefine cardiac cycle and briefly explain phases of heart beat.Ans: Cardiac cycle: One contraction and one relaxation is called as cardiac cycle. Contraction of heart is called systole and relaxation is diastole. One complete cycle takes 0.8 seconds.Phases of heart beat: In first phase called diastole blood flows all the four Chambers passively. In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood. In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute.Marking hintsCardiac cycle:1 markEach phase of heart beat carries ONE mark.
Marking hintsRole of HCI: 2 marks and role of intrinsic factors:2marksNints2+2= 4 Total marksxiiDefine cardiac cycle and briefly explain phases of heart beat.Possible answerAns: Cardiac cycle: One contraction and one relaxation is called as cardiac cycle. Contraction of heart is called systole and relaxation is diastole. One complete cycle takes 0.8 seconds.Phases of heart beat: In first phase called diastole blood flows all the four Chambers passively. In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood. In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute.Marking hintsCardiac cycle:1 markEach phase of heart beat carries ONE mark.
nints2+2= 4 Total marksxiiDefine cardiac cycle and briefly explain phases of heart beat.Possible answerAns:Cardiac cycle: One contraction and one relaxation is called as cardiac cycle. Contraction of heart is called systole and relaxation is diastole. One complete cycle takes 0.8 seconds.Phases of heart beat: In first phase called diastole blood flows all the four Chambers passively. In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood. In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute.Marking hintsCardiac cycle:1 markEach phase of heart beat carries ONE mark.
xiiDefine cardiac cycle and briefly explain phases of heart beat.Possible answerAns:Cardiac cycle: One contraction and one relaxation is called as cardiac cycle. Contraction of heart is called systole and relaxation is diastole. One complete cycle takes 0.8 seconds.Phases of heart beat: In first phase called diastole blood flows all the four Chambers passively. In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood. In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute.Marking hintsCardiac cycle:1 markEach phase of heart beat carries ONE mark.
Possible answerAns:Cardiac cycle: One contraction and one relaxation is called as cardiac cycle. Contraction of heart is called systole and relaxation is diastole. One complete cycle takes 0.8 seconds.Phases of heart beat: In first phase called diastole blood flows all the four Chambers passively. In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood. In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute.Marking hintsCardiac cycle:1 markEach phase of heart beat carries ONE mark.
 Cardiac cycle: One contraction and one relaxation is called as cardiac cycle. Contraction of heart is called systole and relaxation is diastole. One complete cycle takes 0.8 seconds. Phases of heart beat: In first phase called diastole blood flows all the four Chambers passively. In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood. In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute. Marking hints Three phases of heart beat In heart beat In third phase In the phase of heart beat In the phase In the phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute.
Phases of heart beat: In first phase called diastole blood flows all the four Chambers passively. In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood. In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute. Marking hints Cardiac cycle:1 mark Each phase of heart beat required: 3 marks
 In first phase called diastole blood flows all the four Chambers passively. In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood. In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute. Marking hints Three phases of heart beat carries ONE mark.
In second phase i.e systole both the auricles contract together for about 0.1 second filling the ventricles completely with blood.In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute.Marking hintsCardiac cycle:1 markEach phase of heart beatbeat required:3
In third phase the ventricles contract together for about 0.3 seconds pouring blood into aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute. Marking hints Cardiac cycle:1 mark Each phase of heart beat required: 3 marks
aorta and pulmonary artery. Normal rate of heart beat in healthy human being is 72 beats per minute. Marking hints Three phases of heart beat carries ONE mark.
is 72 beats per minute. Marking Cardiac cycle:1 mark Each phase of heart beat carries ONE mark. hints Three phases of beat required: 3 marks
hints Three phases of heart beat required: 3 marks
Three phases of heart heat required 3 marks
1+1+1= 4 Total marks
xiii Draw a diagram showing antibody mediated immune response.
Possible answer antigen-presenting cell bacterium antigen B cell fragment B cell fragment clone of plasma cells secreted antibody molecules
Fig: 13.11 The antibody mediated immune response.

SECTION-C ERQs

MARKING RUBRIC

Q.2	i. Describe cytoskeleton with reference to the discovery, structure, chemical		
Possible			
answei	Ans:		
	Discovery: Cytoskeleton was first time discovered by Koltzoff in 1928. Later on Cohen confirmed the views of Koltzoff in 1977 by his electron microscopic studies.		
	Structure: According to Cohen the cytoplasm of eukaryotic cells contains a		
	cytoskeletal network made up of different types of microtubules microfilaments and intermediate filaments.		
	Chemical composition: Cytoskeleton is chemically composed of tubulin actin		
	myosin tropomyosin and some other proteins.		
	Functions: Several cell organelles such as cilia flagella basal bodies and centrioles are derived from microtubules. Cyclosis and amoeboid movements are because of microfilaments. Intermediate filaments are involved in determination of cell shape and integration of cellular components.		
	ii. Write down FOUR characteristics of monosaccharaides and also classify monosaccharaides on the basis of number of carbon atoms. (5)		
	Ans:		
	Characteristics of monosaccharaides.		
	 Monosaccharaides are simple sugars made up of single sugar unit. 		
	 They cannot be further hydrolyzed into more simple units. 		
	They are easily soluble in water.		
	They are sweet in taste.		
	 They have the same ratio of hydrogen and oxygen as in water. 		
	 They contain either aldehyde or keto group. 		
	They have carbon backbone.		
	Note: Only FOUR required in student answer.		
	Classification.		
	Monosaccharaides have carbon backbone that may contain from three to seven		
	carbon atoms. They have names which ends in-ose. Those with 3 carbon		
	atoms are called trioses, with four atoms are tetroses, with 5 atoms pentoses and so on.		
Marking	i. Discovery carries 1 mark		
hints	Structure carries 1 mark		
	Chemical composition carries 1 mark		
	Functions carries 1 mark		

	1+1+1= 4 Total marks
	ii. 4 Characteristics: 4 marks, Classification: 1 mark. 4+1=5 Total marks
Q. 3	i. Write FOUR comparison between Lock and Key Hypothesis and Induced Fit
Possible	Hypothesis. (4)
answer	
	Ans:
	 According to Lock and Key Hypothesis active sites of enzymes are rigid
	structure but induced Fit Hypothesis says that active site is not a rigid
	structure.
	 Lock and Key Hypothesis says that enzyme and substrate must be spatial fit
	but induced Fit Hypothesis says that they should be spatial as well as
	chemically fit.
	Lock and Key Hypothesis says that active site of enzyme cannot be modified
	but induced Fit Hypothesis says that active site of enzyme modify its shape
	according to the shape of substrate.
	• Lock and Key Hypothesis is explained with the example of lock and key while
	induced Fit Hypothesis is explained by "induced to fit".
	ii. Write down the causes, symptoms and preventive measures of
	bacterial wilt in plants. (1+2+2)
	Anor
	ANS: Courses It is sourced by Dalatenia colongeconvers
	Causes: It is caused by <i>Raistonia solandcearum</i> .
	Symptoms:
	 Wilting of the youngest leaves at the end of the branches.
	 Stunting of plants.
	Preventive measures.
	 Destroying the infected plants immediately.
	Crop rotation
	Control of nematodes
	Use of disinfected farm tools
Marking	i. ONE mark of correct differences between Lock and Key Hypothesis and Induced Fit
hints	Hypothesis. Only FOUR required. 4 marks
	1+1+1= 4 Total marks
	ii. One mark of causes = Only 01 cause are required
	TWO marks of symptoms. Only 02 symptoms are required.
	TWO marks of preventive measures. Only 02preventive measures are required.
	1+2+2= 5 Total marks

Q. 4	i. Define photorespiration and also write THREE steps involved in
Possible	photorespiration. (4)
answer	Ans:
	The process in which oxygen combines with RuBP in the presence of sunlight and carbon dioxide is produced is called photorespiration.
	 Oxygen combines with RuBP (present in stroma of chloroplast) and a compound called glycolate is produced. RuBP+ Q2>Glycolate
	2. Glycolate is converted into glycine (simplest amino acid) in the peroxisome.
	 Glysine is transported to mitochondria where it is converted into serine and a molecule of CO2 is produced.
	Glysine> Serine+CO2
	ii Write any FIVE general characters of animals (5)
	Ans:
	General characters of animals.
	1. Animals develop from two dissimilar haploid gametes i-e larger egg and smaller
	sperm.
	2. The outermost covering of all their cells is cell membrane.
	3. They have a multicellular body.
	4. They are made of diploid eukaryotic cells.
	5. They are heterotrophic and ingest their food.
	Note: Any other correct character of animal other than textbook may be consider
Marking	i. Definition carries= 1 mark and 3 steps {3 marks}
nints	1+1+1+1= 4 Total marks
	II. Each character of animals carries 1 mark. Only 5 required.
0.5	i lustify the role of stomata in associate exchange and
Q. 5 Possible	transpiration (5)
answer	Ans:
	Transpiration is loss of water through the aerial parts of the plant into the
	atmosphere by evaporation. Over 90% of the total transpirational water loss
	from the plant take place through stomata.
	Stomata are structures found within the leaf blade and are responsible for
	facilitating the gaseous exchange of CO_2 and O_2 during photosynthesis. The
	exchange function of the stomata also leads to the loss of plant water through
	transpiration. Transpiration take place if stomata are opened. It also facilitate
	gaseous exchange.

	ii. What is atherosclerosis? Write down the factors that cause atherosclerosis. (4)
	Ans:
	Atherosclerosis: Hardening of the arteries due to the deposition of fatty material such as cholesterol is called atherosclerosis.
	Factors causing atherosclerosis.
	It develops from low density lipoprotein molecules (LDL) becoming oxidized by free radicals.
	When oxidized LDL comes in contact with the wall of an artery a series of reactions occurs to repair the damage to the artery wall caused by oxidized LDL. The body's immune sends specialized white blood cells that called microphages and T lymphocytes to absorb the oxidized LDL forming specialized foam cells. Unfortunately these white blood cells are not able to process the oxidized LDL. They grow and then rupture, depositing a greater amount of oxidized cholesterol into the artery wall. This triggers more white blood cells and the cycle continues. As a result, the artery becomes inflamed. The cholesterol plaque causes the muscles cells to enlarge and form a hard cover over the affected area. This hard cover causes the artery lumen to become narrow. Narrowing of artery reduces the blood flow and increases blood pressure.
Marking	i Correct justification carries 5 Total marks
hints	ii. Definition of Atherosclerosis carries 1 mark and factors causing
	atherosclerosis carry 3 marks.
	1+3= 4 Total marks