MCQs No.	Correct Option
1	B
2	B
3	A
4	D
5	C
6	A
7	A
8	D
9	B
10	B
11	A
12	D
13	C
14	B
15	A

RUBRICS

SECTION- B

Question No.2- Attempt any Eight of the following.
i. If $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 7\end{array}\right]$ and $B=\left[\begin{array}{cc}-5 & 7 \\ 9 & 2\end{array}\right]$ are matrices show that $A+B=B+A$.

Checking Hints:

Total Marks:4=1+1+1+1

Solution:

Now,
$B+A=\left[\begin{array}{cc}-5 & 7 \\ 9 & 2\end{array}\right]+\left[\begin{array}{ll}2 & 1 \\ 0 & 7\end{array}\right]$
$\mathrm{B}+\mathrm{A}=\left[\begin{array}{cc}-5+2 & 7+1 \\ 9+0 & 2+7\end{array}\right]$
$\mathrm{B}+\mathrm{A}=\left[\begin{array}{cc}-3 & 8 \\ 9 & 9\end{array}\right] \longrightarrow$ (2

From eq (1) and eq (2), it is proved: $A+B=B+A$.
ii. Find the product $(a-1)\left(a^{2}+a+1\right)$

Checking Hints:
Total Marks:4=1+1+1+1

Solution:

$(a-1)\left(a^{2}+a+1\right)$
By Using Formula: $\left[(a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3}\right]$
$(a-1)\left(a^{2}+(a)(1)+1^{2}\right)$
$(a)^{3}-(1)^{3}$

$a^{3}-1$

1
iii. Factorize $4 x^{4}+81$

Checking Hints:
Total Marks:4=1+1+1+1

Solution:

iv. Divide $Z_{1}=2+3 i$, by $Z_{2}=5-i$

Checking Hints:

Total Marks:4=1+1+1+1

Solution:

$\frac{\mathrm{Z} 1}{\mathrm{Z} 2}=\frac{2+3 i}{5-i}$
$\frac{\mathrm{Z} 1}{\mathrm{Z} 2}=\frac{2+3 i}{5-i} X \frac{5+i}{5+i} \quad$ Multiplying and Dividing by(5+i)

$\begin{aligned} \frac{\mathrm{Z} 1}{\mathrm{Z} 2} & =\frac{10+2 i+15 i+3 \mathrm{i}^{2}}{5^{2}-i^{2}} \\ \frac{\mathrm{Z} 1}{\mathrm{Z} 2} & =\frac{10+17 i+3(-1)}{25-(-1)} \\ \frac{\mathrm{Z} 1}{\mathrm{Z} 2} & =\frac{10+17 i-3}{25+1} \\ \frac{\mathrm{Z} 1}{\mathrm{Z} 2} & =\frac{10-3+17 i}{26} \\ \frac{\mathrm{Z} 1}{\mathrm{Z} 2} & =\frac{7+17 i}{26} \\ \frac{\mathrm{Z} 1}{\mathrm{Z} 2} & =\frac{7}{26}+\frac{17}{26} i \longrightarrow\left(\mathrm{i}^{2}=-1\right) \end{aligned}$
v. If $x=\sqrt{3}-\sqrt{2}$, find the value of $x-\frac{1}{x}$. Checking Hints: Total Marks:4=1+1+1+1 Solution: $\begin{aligned} & \mathrm{x}=\sqrt{3}-\sqrt{2} \\ & \frac{1}{x}=\frac{1}{\sqrt{3}-\sqrt{2}} \\ & \frac{1}{x}=\frac{1}{\sqrt{3}-\sqrt{2}} \times \mathrm{v} \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\ & \frac{1}{x}=\frac{\sqrt{3}+\sqrt{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}} \\ & \frac{1}{x}=\frac{\sqrt{3}+\sqrt{2}}{3-2} \\ & \frac{1}{x}=\frac{\sqrt{3}+\sqrt{2}}{1} \\ & \frac{1}{x}=\sqrt{3}+\sqrt{2} \longrightarrow 1 \end{aligned}$ Now, $\begin{aligned} & x-\frac{1}{x}=\sqrt{3}-\sqrt{2}-(\sqrt{3}+\sqrt{2}) \\ & x-\frac{1}{x}=\sqrt{3}-\sqrt{2}-(\sqrt{3}+\sqrt{2}) \\ & x-\frac{1}{x}=-2 \sqrt{2} \end{aligned}$
vi. Find L.C.M by factorization of $x+y, x^{2}-y^{2}$ Checking Hints: Total Marks:4=1+1+1+1 Solution: $\begin{aligned} & x+y=x+y \\ & x^{2}-y^{2}=(x+y)(x-y) \longrightarrow 1 \end{aligned}$ L.C.M=Common Factors x Non-Common Factors $\begin{aligned} & \quad=(x+y) \mathrm{x}(x-y) \\ & =(x+y)(x-y) \\ & \text { L.C.M }=x^{2}-y^{2} \end{aligned}$

vii. Sum of three consecutive integers is 39 , find the integers Checking Hints:
Total Marks:4=1+1+1+1

Solution:

$1{ }^{\text {st }}$ Positive Integer $=x$
$2^{\text {nd }}$ Positive Integer $=x+1$
$3^{\text {rd }}$ Positive Integer $=x+2$
According to given Condition:
$x+(x+1)+(x+2)=39$
$x+x+x+1+2=39$
$3 x+3=39$
$3 x=39-3$
$3 x=36$
$x=\frac{36}{3}$
$x=12$
$1^{\text {st }}$ Positive Integer $=x=12$
$2^{\text {nd }}$ Positive Integer $=x+1=12+1=13$
$3^{\text {rd }}$ Positive Integer $=x+2=12+2=14$

viii. Find the solution set of the equation $6 x-5=2 x+9$

Checking Hints:

Total Marks:4=1+1+1+1

Solution:

$6 x-5=2 x+9$
$6 x-2 x=9+5$
$4 \mathrm{x}=14$
$\frac{4 x}{4}=\frac{14}{4}$
$x=\frac{7}{2}$
Solution Set $=\left\{\frac{7}{2}\right\}$
ix. Show that $A(-1,2), B(7,5)$ and $C(2,6)$ are the vertices of scalene triangle.

Checking Hints:

Total Marks:4=1+1+1+1

Solution:

$$
|\overline{A B}|=\sqrt{[7-(-1)]^{2}+(5-2)^{2}}
$$

$$
|\overline{A B}|=\sqrt{[7+1]^{2}+(3)^{2}}
$$

$$
|\overline{A B}|=\sqrt{8^{2}+9}
$$

$$
|\overline{A B}|=\sqrt{64+9}
$$

$$
|\overline{A B}|=\sqrt{73} \longrightarrow \boldsymbol{1}
$$

Now,

$\begin{aligned} & \|\overline{B C}\|=\sqrt{(2-7)^{2}+(6-5)^{2}} \\ & \|\overline{B C}\|=\sqrt{(-5)^{2}+(1)^{2}} \\ & \|\overline{B C}\|=\sqrt{25+1} \\ & \|\overline{B C}\|=\sqrt{26} \longrightarrow 2 \end{aligned}$ And, $\begin{aligned} & \|\overline{C A}\|=\sqrt{(-1-2)^{2}+(2-6)^{2}} \\ & \|\overline{C A}\|=\sqrt{(-3)^{2}+(-4)^{2}} \\ & \|\overline{C A}\|=\sqrt{9+16} \\ & \|\overline{C A}\|=\sqrt{25} \\ & \|\overline{C A}\|=5 \longrightarrow 3 \end{aligned}$ From eq (1),2 and (3. $\|\overline{A B}\| \neq\|\overline{B C}\| \neq\|\overline{C A}\|$ Hence points A, B, and C are the vertices of scalene triangle.
x. \quad Prove that $\log _{b} p q=\log _{b} p+\log _{b} q$. Checking Hints: Total Marks:4=1+1+1+1 Solution: Let, $\log _{b} p=x \longrightarrow \text { (1) and } \log _{b} q=y \longrightarrow \text { (2 }$ In Exponential Form: $b^{x}=p \text { and } b^{y}=q$ Now, $\begin{aligned} & p q=b^{x} \times b^{y} \\ & p q=b^{x+y} \text { or } \\ & b^{x+y}=p q \end{aligned}$ Now in logarithmic form: $\begin{aligned} & \log _{b} p q=x+y \\ & \log _{b} p q=\log _{b} p+\log _{b} q \end{aligned}$ *(by eq (1) and (2)
xi. If two angles of a triangle are congruent then the sides opposite to them are also congruent. Checking Hints: Total Marks:4=1+1+1+1 Solution: $\text { In } \triangle A B C,<B \cong<C$ To prove: $\overline{A B} \cong \overline{A C}$

1		$\begin{aligned} & \hline 11+23>x \\ & 34>x \\ & X<34 \\ & \hline \end{aligned}$	
	Q4. If a line segment intersects the two sides of a triangle in the same ratio then it is parallel to third side. Checking Hints: Total Marks: 6=1+1+1+1+1+1		
1	\longrightarrow Given: $\stackrel{K L}{ }$ intersects two sides $\overline{A B}$ and $\overline{A C}$ of $\triangle A B C$ $\frac{\text { at } \mathrm{K} \text { and } \mathrm{L} \text { such that: }}{m \overline{\overline{K B}}}=\frac{m \overline{A L}}{m \overline{L C}}$ \longrightarrow $\overline{K L} \\| \overline{B C}$		
	Proof:		
\square	Statements	Reasons	
	Suppose $\overleftrightarrow{K L}$ is not parallel to $\overline{B C}$, then let $\overline{B M}$ be drawn through B, parallel to $\overline{K L}$, meeting $\overrightarrow{A C}$ at M .		
	$\frac{m \overline{A K}}{m \overline{K B}}=\frac{m \overline{A L}}{m \overline{L M}} \longrightarrow \text { (1) }$ But $\begin{aligned} & \frac{m \overline{A K}}{m \overline{K B}}=\frac{m \overline{A L}}{m \overline{L C}} \longrightarrow \text { (2) } \\ & \frac{m \overline{A L}}{m \overline{L M}}=\frac{m \overline{A L}}{m \overline{L C}} \end{aligned}$	Proportional segments are cut by line parallel to one side of the triangle. Given From 1 and 2 .	

	$\mathrm{m} \overline{L M}=\mathrm{m} \overline{L C}$ This is possible only when C and M coincide, hence. Hence our supposition is wrong and $\overline{K L} \\| \overline{B C}$.	Denominators of equal fractions.
	Q5. In a right-angled triangle, the sq equal to the sum of the squares Checking Hints: Total Marks: $6=1+1+1$ $+1+1+1$ Solution: Given ABC is a right-angled triangle, having right angle at ' C ', where ' a ', ' b ' and ' c ' are the measures of sides $\overline{B C}, \overline{C A}$ To Prove: $\rightarrow c^{2}=a^{2}+b^{2}$ Construction: Draw $\overline{C D} \perp \overline{A B}$, let $\mathrm{m} \overline{C D}=\mathrm{h}$ Proof:	uare of the length of hypotenuse is of the lengths of the other two sides. $\overline{A B}$ respectively. and $\overline{A D}=\mathrm{x}$, therefore $\overline{B D}=\mathrm{c}-\mathrm{x}$
	Statements	Reasons
3	In $\begin{aligned} & \triangle A B C \leftrightarrow \triangle C D A \\ & \angle \mathrm{BCA} \cong \angle \mathrm{CDA} \\ & \angle \mathrm{~A} \cong \angle \mathrm{~A} \end{aligned}$ And $\begin{aligned} & \angle \mathrm{ABC} \cong \angle \mathrm{ACD} \\ & \triangle B C A \cong \triangle C D A \end{aligned}$ Hence $\frac{c}{b}=\frac{b}{x}$ i.e $c x=b^{2} \longrightarrow \text { (1) }$ Again in $\begin{aligned} \triangle A B C & \leftrightarrow \triangle B D C \\ \angle B C A & \cong B D C \\ \angle B & \cong B \end{aligned}$ And $\begin{aligned} & \angle C A B \cong \angle \mathrm{DCB} \\ & \triangle B C A \cong \triangle B D C \end{aligned}$ Hence	Right Angles Self-Congruent Complement of $\angle \mathrm{A}$ By Definition Corresponding Sides of similar triangles. Right Angles Self-Congruent Complement of $\angle B$ by definition.

$\frac{c}{a}=\frac{a}{c-x}$	
$c(c-x)=a^{2}$	Corresponding of similar angles.
$c^{2}-\mathrm{cx}=a^{2} \longrightarrow 2$	
Adding 1 and 2 we get,	
$\mathrm{cx}+c^{2}-\mathrm{cx}=b^{2}+a^{2}$ $c^{2}=a^{2}+b^{2}$	

Q8: Construct triangle KML when length of its two sides ML and KM are 5.4 cm and 3.1 cm respectively and $\mathbf{m}<\mathbf{M}=105^{\boldsymbol{0}}$

Checking Hints:

Total Marks: 6=1+1+1+1+1+1

Solution:

Steps of Construction:

1. Draw a line segment $\mathrm{m} \overline{M L}=5.4 \mathrm{~cm}$.
2. Draw an angle $\mathrm{m} \angle \mathrm{M}=105^{\circ}$
3. Taking M as center, draw an arc of 3.1 cm which cuts $\overrightarrow{\mathrm{MX}}$ at point K.
4. Join point K and L.
$\Delta K L M$ is formed which the required triangle.

Q9: Parallelogram on the same base and lying between the same parallel lines (or of the same altitude) are equal in area.

Checking Hints:

Total Marks: 6=1+1+1+1+1+1

Solution:

