MARKING SCHEME PHYSICS MODEL PAPER CLASS XI

Rubrics

SECTION -A 1. In scientific notation, $(5 \times 10^9) \times (3 \times 10^{24})$ is expressed as: A)1.5 x 10³² B)1.5 x 10³⁴ C)15 x 10³² D)15 x 10³⁴ 2. The Y-component of a force of magnitude 10N lying along X-axis is: A)**0N** B)5N C)10N D)15N 3. The torque due to the gravitational force of the sun on the earth is: C)mgdsin θ A)mgd B)mgdcosθ D)Zero 4.A body is displaced from a point (2,2) to a point (5,6), the magnitude of displacement is: A)2m B)4m C)5m D)11m 5. The minimum number of forces of unequal magnitude required to keep a body in equilibrium is: C)4 A) 2 B)3 D)5 6.The velocity-time graph of a body moving with uniform velocity is: A)Parallel to X-axis **B)**Parallel to Y-axis C)Parabolic D)Hyperbolic 7. The gravitational pull of the earth on a unit mass of a body is: A) 9.8N B)9.8kg $C)9.8m/s^{2}$ D)9.8J 8. A body is thrown vertically upward, the work done by gravity on it is: C)Positive A)Maximum B)Zero D)Negative 9. If the force and displacement of a body in the direction of force are halved, the work would change by factor: $B)\frac{1}{2}$ $D)\frac{1}{4}$ A)2 C)4 10. The angular speed of the Earth's daily rotation in rad/minute is: **A)** $\frac{\pi}{120}$ B) $\frac{\pi}{180}$ $C)\frac{\pi}{270}$ $D)\frac{\pi}{720}$ 11. The minimum velocity required to put a satellite into orbit is called: B)Critical velocity A)Escape velocity C)Terminal velocity D)Orbital velocity 12. When a satellite falls from high altitude to lower altitude its speed: A)Increases B)Decreases C)Remains Same D)Becomes zero 13. The product of frequency and time period is equal to: A)1 D) 0 B) -1 C)∞ 14. If 40 waves pass through a point in one second with a wavelength of 5cm, the wave speed is: A)2m/s B)5m/s C)20m/s D) 40m/s 15. In a filter pump, when water flows out from the jet section, the pressure nearby: A) Increases B) Decreases C)Remains same D) Becomes zero

16.The principle of Young's Double Slits experiment is based on the division of:A) AmplitudeB)FrequencyC) WavelengthD) Velocity17.The quantity that remains constant during a heat engine cycle is:

A) Heat	B) Pressure	C)Work done	D) Internal energy
18.N/kg is equivalent	to:		
A)m/s	B) m/s²	C)kgm/s	D)kgm/s ²

rence
TBB
de XI
e#11
4
ТВВ
de XI
e#28
4
ГВВ
de XI
e#53

Section-B

	90°.		
	• When the product	is negative, vectors are	
	either antiparallel to $e^{-90^\circ} < A < 180^\circ$	each other, or he at angle	
Marking	1+1+	-1+1	4
iv	Two forces of 15N and	20N are applied on an	KPTBB
	object at 60° to each othe	er, find the resultant force	Grade XI
	using head	to tail rule.	Page#40
Possible	Steps		
Answer	(1) Souther Lat 571+ dam		
	15N= 3cm ZoN= 4cm		
	(4) Draw grim victors A	lake entropolar combinate system	
	Hand to Tail and		
		21301	
	x	E. a States	
	6 3	$\xrightarrow{r_{2in}} \rightarrow \times$	
		againste of smallert	
		F = 6-08cm = 30-91N	
	\downarrow_{γ}	Directim= 34-7"	
Marking	1+1+	-1+1	4
V	Explain how the escape ve	elocity relates to the	KPTBB
	gravitational constant (G)	, and radius (Re) of the	Grade XI
	earth.		Page#134,135
Possible	Escape velocity:		
Answer	The minimum initial velo	ocity, which a projectile	
	must have at the Earth's s	surface in order to go out	
	of Earth's gravitational f	ield is known as escape	
	velocity.(1)		
	If a projectile is given an in	nitial kinetic energy equal	
	to $\frac{dM_{em}}{R_{e}}$, it will just get	out of gravitational field.	
	The value of escape velo	city can be computed by	
	equating the initial kinet	tic energy with absolute	
	potential energy at the su	rface of the earth. (1)	
	$\frac{1}{2}mv_{esc}^2$	$=\frac{GM_em}{R}$	
	2	$\overline{M_{e}}$	
	$v_{esc} = \sqrt{\frac{-2}{H}}$	$\frac{1}{R_e}$ (1)	
	$v_{esc} = \sqrt{2G}$	$\frac{1}{R_e}$ (1)	
Marking	1+1+1+1		4
vi	Differentiate conservative	e and non-conservative	KPTBB
			0 1 TT
	forces by giving two exam	ples of each.	Grade XI
	forces by giving two exam	ples of each.	Grade XI Page#122,123
Possible	forces by giving two exam Coservative Force	ples of each. Non-conservative	Grade XI Page#122,123

	Conservative forces are those for which the work done is independent of the path taken and depends only on the initial and final positions. The work done by conservative force	Non-conservative forces are those for which the work done depends on the path taken. The work done by conservative force along a closed path is not zero. Examples include	
	along a closed path is zero. Examples include gravitational force, electrostatic force, and spring force (elastic force).	friction, air resistance, and contact forces like pushing or pulling.	
Mortina	2	2	1
wiarking	Lf aprofoil lift the aprople	-Z	4 KDTRD
VII	do the pilots make the aeroplane fly upside down?		Grade XI Page#205
Possible Answer	According to Bernoulli's principle, the pressure difference above and below the wings generates lift due to varying air speeds; in inverted flight, pilots achieve lift by adjusting the angle of attack.(1) By increasing this angle while upside down, they ensure the airflow creates sufficient pressure difference to lift the aircraft upward relative to its inverted position.(1) The control surfaces, especially the elevator, are used to maintain this critical angle of attack, compensating for the inverted aerofoil shape.(1) Thus, through precise adjustments and understanding of aerodynamics, pilots can sustain inverted flight by manipulating lift in accordance with Bernoulli's principle.(1)		
Marking	1+1+	-1+1	4
viii	Define laminar flow and viscous fluid from laminar	explain the transition of to turbulence condition.	KPTBB Grade XI Page#199
Possible Answer	Laminar flow: The flow is said to be laminar, if every particle through a particular po same velocity as followe	e streamline, steady, or e of a fluid that passes int moves along exactly d by particles that have	

	passed the point earlier. (1)	
	smooth path such that the paths of different	
	particles never cross each other.(1)	
	Turbulent flow is irregular flow characterized by	
	small whirlpool-like regions.	
	Above a certain critical speed, fluid flow becomes	
	turbulent.(1)	
	In turbulent flow, the speed of the fluid at a point	
	is continuously undergoing changes in both	
	magnitude and direction. Turbulent flow tends to	
	occur at higher velocities and low viscosity.(1)	
Marking	1+1+1+1	4
ix	Describe the effect of pressure and moisture on	KPTBB
	speed of sound in air.	Grade XI
Possible	Brossuro:	Page#199
Answer	For one mole of an ideal gas having volume V and	
	pressure P at temperature T, we can write General	
	gas equation.	
	PV = RT.	
	$v_{\rm r} = \frac{\rm RT}{\rm r}$ (1)	
	$V = \frac{1}{P}$ (1)	
	where R is a general gas constant. If m is the mass	
	of the gas, then its density is m	
	$\rho = \frac{m}{V}$	
	$Or o = \frac{mP}{mP}$	
	Therefore speed of sound is V= $\left \frac{\mathbf{y}P}{\mathbf{x}}\right $ (1)	
	$\sim \sqrt{\rho}$	
	$V = \sqrt{\frac{\gamma RT}{m}}$	
	Hence the speed of sound in air is independent of	
	its pressure. (1)	
	Moisture:	
	The presence of moisture in the air reduces the	
	resultant density of air. The net result is that speed	
	of sound increases with humidity. Hence, the	
	velocity of sound in damp air is greater than its	
	value in dry air. (1)	
Marking	1+1+1+1	4
x	Differentiate between transverse and	KPTBB
	compressional waves by giving two examples	Grade XI
Dessilat		Page#255
Possible	Transverse waves:	

Answer	The waves in which the particles of medium	
	vibrate along a line perpendicular to the direction	
	of propagation of the waves are known as	
	transverse waves. Transverse waves consist of	
	crust and trough.	
	Examples : (any two) water wayes, light wayes,	
	radio waves, microwaves etc.	
	Compressional or longitudinal waves:	
	Those wayes in which the particles of the medium	
	vibrate about their mean position along the	
	direction of propagation of the wayes are called	
	compressional or longitudinal waves longitudinal	
	compressional or longitudinal waves. Longitudinal	
	waves consist of compressions and rarefactions.	
	Examples:(any two)	
	Sound waves, Seismic P -waves	
Marking	1+1+1+1	4
Xi.	Describe two applications of Doppler effect to	KPTBB
	electromagnetic waves.	Grade XI
		Page#290,291
Possible	Doppler effect is not confined to sound waves but	
Answer	equally applicable to light waves.	
	Application of Doppler effect are	
	(1) Speed and direction of the plane: The	
	reflection of radar waves from an aeroplane. The	
	frequency of reflected waves is decreased if the	
	plane is moving away from the source. The	
	frequency of reflected waves is increased if the	
	plane is moving towards the source. From this	
	frequency shift, the speed and direction of the	
	plane can be determined	
	(2) Sneed and Direction of Submarine: When	
	(2) Speed and Direction of Submanne. When	
	submaring the frequency is changed by this	
	submarine, the frequency is changed. By this	
	change in frequency, we can calculate the speed	
	and direction of the submarine. The velocities of	
	the earth satellites are also determined from the	
	Doppler shift in the frequency of radio waves	
	which they transmit.(2)	
Marking	2+2	4
Xii	Define interference of light and state the necessary	KPTBB
	conditions to observe it.	Grade XI
	-	Page#290,291
Possible	Interference :	
Answer	Interference is described as the effect produced by	
	the superposition of waves from two coherent	
	sources travelling in the same direction.(1)	
	Conditions to observe interference of light.(Any	

	 three) (i) The light waves must come from two coherent sources. (ii) The amplitude of waves must be equal or nearly equal. (iii) The light waves should be perfectly monochromatic. (iv) The path difference of the waves from the two sources must be small. (v) The principle of linear superposition should be applicable. 	
Marking	1+1+1+1	4
Xiii	Determine the angle at which first-order Bragg diffraction occurs for X-rays with a 4nm wavelength incident on a crystal with a 6nm lattice spacing.	KPTBB Grade XI Page#331
Possible	Given data:	
Answer	Wavelength, λ = 4nm	
	= 4 x 10 ⁻⁹ m	
	Lattice spacing, d = 6nm	
	= 6 x 10 ⁻⁹ m	
	Order of the image=m=1	
	To find: Angle, θ = ?	
	<u>Formula:</u>	
	$2dsin\theta = m\lambda$	
	$\sin\theta = \frac{m\lambda}{2d}$	
	Soliution:	
	$\sin\theta = \frac{1 \times 4 \times 10^{-9}}{2}$	
	$\frac{2 \times 6 \times 10^{-9}}{\text{Sin} \theta - \frac{4}{-1}}$	
	$\frac{5110}{12}$	
	SIND = 0.33 A - 19°	
	0 - 15	
Marking	1+1+1+1	4

Section-C

Item no	Question(Description)	Reference
2.(a)	What is projectile motion? Describe the range of	KPTBB Grade XI
	influences the maximum range	Page#105.107
Possible	Projectile motion:	
answer	Projectile motion is the form of two-dimensional	
	motion experienced by an object or particle that is	
	thrown near the Earth's surface and moves along a	

	curved path under the action of gravity only. The path	
	followed by a projectile is called its trajectory which is	
	parabola.(1)	
	Range:	
	The horizontal distance from point of projection to	
	point of impact is called range of projectile. Consider a	
	projectile which is thrown with certain velocity v_0	
	making an angle θ with the horizontal (1)	
	To find the maximum range we will use second	
	equation of motion along x-axis	
	$c_{1} = a_{1} + \frac{1}{2}a_{2} + \frac{2}{2}$	
	$S_x = v_{ix}\iota + \frac{1}{2}a_x\iota^2$	
	Here $v_{ix} = v_{o}\cos\theta$, $S_x = R$, $a_x = 0$, $t = \frac{1}{g}$ (1)	
	Putting values	
	$R = v_0 \cos\theta(\frac{2v_0 \sin\theta}{a}) + \frac{1}{2} \times 0 \times (\frac{2v_0 \sin\theta}{a})^2$	
	$2v_ssin\theta$	
	$R = v_{o} \cos\theta(\frac{-r_{0} - r_{0}}{g})$	
	$R = \frac{v_o^2}{a} (2sin\theta \cos\theta)$	
	$2\sin\theta\cos\theta = \sin2\theta$	
	$R = \frac{v_{\circ}^{2}}{\sin 2\theta} (1)$	
	g Maximum range angle:	
	Since the maximum value for the cip of any angle is 1	
	Since the maximum value for the sin of any angle is 1,	
	so the factor 20 will be maximum if it is equal to 1 as	
	well.	
	$\sin 2\theta_{max} = 1$	
	Or $2\theta_{max} = \sin^{-1}1$	
	Since Sin ⁻¹ 1= 90°	
	$2\theta_{max}$ =90°	
	θ_{max} =45° (1)	
Marking	1+1+1+1	5
2.(b)	Calculate the horizontal range of a ball thrown at 40	KPTBB
	m/s at an angle of 30° to the horizontal.	Grade XI
		Page#109
Possible	<u>Given data:</u>	
answer	$v_{a} = 40 \text{m/s}$	
	$\dot{\theta} = 30^{\circ}$	
	$g = 9.8 m/s^2$	
	To find:	
	Formula:	
	v^2 (20	
	$R = \frac{-}{g} sin 2\theta$	
	Soliution:	
	$B = \frac{(40)^2}{\sin^2(30^\circ)}$	
	9.8 9.111 June	
	K =141./M	

Marking	1+1+1+1	4
3.(a)	Describe centripetal acceleration and prove that	KPTBB
	$a_{\perp} = \frac{v^2}{2}$	Grade XI
	$a_c = \frac{1}{r}$	Page#155,156
Possible	Centripetal acceleration:	
answer	Acceleration produced in a body directed towards the	
	centre of circular path is called centripetal acceleration.	
	R R	
	\mathbf{V}_2 \mathbf{V}_1 \mathbf{V}_2 \mathbf{V}_1	
	r	
	consider a body of mass m moving in a circle of radius r with uniform	
	speed \vec{v} . C is centre of circle. At point A at time t ₁ , velocity of body is \vec{v} , and at	
	point B' at time t ₂ , velocity of body is \vec{v}_3 . Let us now draw a triangle PQR such that	
	PQ is equal and parallel to \vec{v} , and PR is equal and parallel to \vec{v}_j . As speed is uniform	
	hence, $\vec{v}_{,}$ = $\vec{v}_{,}$ = \vec{v} in magnitude but they differ in direction. By vector diagram,	
	$\vec{v}=\vec{v}_1\cdot\vec{v}_1$ is the change in velocity of body in time interval $\Delta t = t_1 \cdot t_1$. When time Δt	
	is small the change $\vec{\Delta v}$ is also small in that case arc $~\overline{AB}~~$ is approximately equal to	
	cord AB. On comparison, we see that $\ \Delta ACB$ and Δ PQR are isosceles triangles, so	
	these are similar.	
	Geometrically, $arc AB = \frac{QR}{QR}$	
	Ac PQ	
	$Or_r = \frac{E}{r} = \frac{\Delta O}{v}$	
	(2)	
	Condition	
	When θ is very small, or when Δt=t _i -t _i is very small, point 'B' will by very near to point 'A' and then:	
	S=vt	
	$r = \frac{\Delta v}{v}$ (provided that Δt is very very small)	
	Or $\frac{\Delta t}{\Delta t} = \frac{1}{r}$	
	Or $\lim_{n\to\infty} \Delta v = a_{n-1}$	
	Or	
	$a_{irot} = \frac{v}{r}$	
	This acceleration is also called centripetal acceleration.	
	Thus $a_r = \frac{v^2}{v}$	
	(1)	
Marking	(1)	5
3 (h)	Find the centrinetal acceleration of the Moon as it	<u> </u>
	orbits the Earth in a circle of radius 382,400 km and a	Grade XI
	period of 27.3 days	Page#155,156

Possible	<u>Given data:</u>	
answer	r = 382,400km	
	= 3.824 x 10 ⁸ m	
	T = 27.3 days	
	= 2,359,680 sec	
	<u>To find</u> :	
	<i>a_c</i> = ?	
	Formula:	
	$a_c = \frac{v^2}{r}$	
	Solution:	
	$v = \frac{2\pi r}{r}$	
	$T_{T} = 1018 m/c$	
	V = 101011/5 (1018) ²	
	$a_c = \frac{(1010)}{3.824 \times 10^8}$	
	= 2.7 ×10 ⁻³ m/s ²	
Marking	1+1+1+1	4
4.(a)	Show that a simple pendulum executes simple	KPTBB
	harmonic motion.	Grade XI
D '11		Page#231
Possible	Simple Pendulum:	
answei	A simple pendulum consists of a small neavy mass in suspended by a light string of length '1' fixed with its	
	upper end (1 mark)	
	When such a pendulum is displaced from its mean	
	position 'O' it starts oscillating to and fro about the	
	mean position. Let the bob of pendulum of mass 'm'	
	having weight 'w' is displaced from mean position O	
	towards A, where 'w' acts vertically in downward	
	direction, 1 is length of pendulum, which is the sum of	
	the length of string and the radius 'r' of the metallic	
	bob. I is tension in string, we have resolved 'w' into its	
	component as:	
	× C	
	N	
	$\theta \setminus \ell$	
	τ +V	
	+x	
	m	
	S S S S S S S S S S S S S S S S S S S	
	$mg \sin\theta$ θ $mg \cos\theta$	
	w = mg	
	(1 mark)	

	$T = mgcos\theta$ $F_{applied} = -F_{restoring} \qquad (i)$ $F_{restoring} = -mgsin\theta \qquad (ii)$ $ma = -mgsin\theta \qquad (F_{applied} = ma)$ $a = -gsin\theta \qquad (iii)$ (1 mark) It means that 'a' depends upon sinθ. When '\theta' is very small, sin\theta = \theta and equation (iii)	
	But when ' θ ' is very small, point 'O' will be very near to 'A' and arc OA \Rightarrow x is a straight line and then \triangle AOC will be a right angle triangle. (1 mark) And x/l = sin $\theta \Rightarrow \theta$, then eq (iv) becomes, a = $-g\frac{x}{l}$ Or a = $-(\frac{g}{l})$ x	
	During the motion, 'g' and 'l' remain constant and so we put $\frac{g}{l} = \omega^2 = \text{constant}$. Hence a = constant (-x) a - \propto x This is the equation of SULM so motion of simple	
	pendulum is S.H.M. (1 mark)	
Marking	1+1+1+1	5
4.(b)	Calculate the length of a pendulum with a period of 2 seconds at the surface of moon . ($g_m = 1.63 \text{ m/s}^2$).	KPTBB Grade XI Page#231
Possible answer	Given data: $T = 2 \sec g = 1.63 \text{m/s}^{2}$ To find: I = ? Formula: $T = 2\pi \sqrt{\frac{1}{g}}$ $I = \frac{T^{2}g}{4\pi^{2}}$ Soliution: $I = \frac{(2)^{2} \times 1.63}{4(3.14)^{2}}$ $I = 0.165 \text{m}$	
Marking	1+1+1+1	4
5.(a)	Prove that for an ideal gas, Cp - Cv = R .	KPTBB Grade XI Page#362
Possible	When gas is heated at constant volume, there is no	
angwar		
answei	work done by the gas against the surrounding. The heat	

	the form of molecular kinetic energy, thus raising the	
	On the other hand, when the gas is heated at constant	
	pressure the gas will expand on being heated It does	
	work against the surrounding. Hence, heat must be	
	supplied to change the internal energy of the gas and to	
	perform external work. Since the change of internal	
	energy is the same in both cases, the specific heat at	
	constant pressure, Cp, is greater than the specific heat at	
	constant volume, Cv i.e., Cp> Cv because external work	
	is also performed when the gas expands at constant	
	pressure.(1 mark)	
	If ΔQ_v is the amount of heat supplied and ΔT is the	
	rise in temperature, then by the definition of the	
	constant volume molar specific heat we have.	
	$\Delta Q_v = nC_v \Delta T (i)$	
	The pressure of the gas increases during the process,	
	but no work is done, because the volume is kept	
	constant. $\Delta W_v = 0$	
	From the first law of thermodynamics: AQ = AU + AW	
	$\Delta Q_v = \Delta U + \Delta W_v$	
	$\Delta Q_v = \Delta U + 0$	
	$\Delta Q_v - \Delta U (II)$	
	AII = nC AT (iii) (1 mark)	
	If $\Lambda \Omega$ is the heat supplied and ΛT is the rise in	
	d_{Q_p} is the heat supplied and ΔT is the fise in	
	temperature, then $AO = pC AT$ (iv)	
	$\Delta Q_p - \Pi C_p \Delta I (IV)$	
	The work done by the gas against the constant external	
	pressure is given by $\Delta W = Force \times distance$	
	$\Delta W_{\rm p} = F\Delta I$	
	$\Delta W_{p} = PA\Delta Y = P\Delta V (V)$	
	For an ideaal gas, the general gas equation is	
	$P\Delta V = nR\Delta I$	
	Inerefore $\Delta vv_p = P\Delta v = nR\Delta I$ (VI) (1 mark)	
	From first law of thermodynamics	
	$\Delta Q_p = \Delta U + \Delta W_p (VII)$	
	Substituting the expressions for ΔQ_p , ΔU and ΔW_p we	
	get $nC_p\Delta T = nC_v\Delta T + nR\Delta T$	
	On simplifying we get	
	Cp - Cv = R (1 mark)	
Marking	1+1+1+1	5
5.(b)	Determine the change in internal energy of the system	KPTBB
, , ,	given that 37,200J of heat is supplied to the system	Grade XI
	and it performs 5,000 J of work.	Page#263
Possible	Given data:	

answer	ΔQ = 37200J	
	ΔW = 5000J	
	<u>To find</u> :	
	$\Delta U = ?$	
	Formula:	
	$\Delta Q = \Delta U + \Delta W$	
	$\Delta U = \Delta Q - \Delta W$	
	Soliution:	
	$\Delta U = 372000 - 5000$	
	ΔU = 32,200J	
Marking	1+1+1+1	4