MARKING SCHEME CHEMISTRY MODEL PAPER CLASS XI Section A

Time	20 minutes					Marks: 18
1.	For a reaction $CO_{(g)}$ -	$+ Cl_{2(g)} \rightleftharpoons COC$	$l_{2(g)}, \frac{kp}{kc}$	is equal to:		
	(a) $\frac{1}{RT}$	(b) 1.0	$(c)\sqrt{RT}$	(d)RT		
2.	Spectral line of Lyman (a) ultra violet region	Series lies in: (b) visible reg	ion	(c) near IR		(d) far IR
3.	How many moles of Ale	uminum oxide is	formed	when 6 moles o	f oxygen	is used?
	$Al + O_2 \longrightarrow Al_2O_3$ (a) 4 mol	(b) 6mol		(c) 8 mol		(d) 10 mol
4.	Which of the following (a) $NH_3 > BF_3 > C_2H_6$	series shows con (b)BF ₃ >NH ₃ >C	rrect bon ₂ H ₆	d angle order? (c) NH ₃ >C ₂ H ₆ >	BF ₃ (d)	BF3 >C2H6 >NH3
5.	What is the ratio betwee (a) 1:4	en Sigma and pi (b) 4:1	bonds in (c) 3:2	acetylene mole (d) 2:3	cule?	
6.	Which property of liquid of (a) expansion	crystals resemble (b) optical	with solid	s? (c) density		(d) hardness
7.	What will be the change in volume at 0°C?	n temperature of a	gas if its	volume increases	four time	es from its initial
	(a) 819 ⁰ C	(b) 819K		(c) 1092 ⁰ C		(c) 1192K
8.	Conversion of gas into sol a) sublimation (b) cond	id is called lensation		(c) deposition		(d) solidification
9.	The most unsymmetrical (a) triclinic	crystal system is c (b) cubic	alled:	(c) tetragonal		(d) rhombic
10.	Solution contains 36g of w (a) 0.5	rater and 2 mole of (b) 0.4	f methano	l, mole fraction o (c) 0.3	f H ₂ O wil	ll be: (d) 0.1
11.	In which of the followin (a) N ₂ O	ng compound nit (b) NO ₂ -	rogen ex	hibit -1 oxidatio (c) NH2OH	on state?	(d) N ₂ O ₄
12.	When ideal gas expands	s from 15dm ³ to	20dm ³ a	gainst standard o	external j	pressure, the
	work done will be: (a) $10 \text{ atm } \text{dm}^3$ (b) -10 atm^3	atm dm ³	(c) 5 atm	n dm ³	(d)-5 ati	m dm ³
13.	Which of the following (a) diamond (b) soli	is not the examp d carbon dioxide	ole of gia (c) grapl	int covalent struchite	cture? (d) silic	on dioxide
14.	pH of 0.001 M H ₂ SO ₄ i (a) 3.0	is: (b) 2.69	(c) 2.9		(d) 1	
15.	For a reaction; $2A + B$ equilibrium constant (K (a) double	$\Rightarrow 3C + D \text{ by d}$ (c) would be: (b) half	oubling t (c) incre	the concentration ase by 2	n of C, th (d) not	ne value of change
16.	Reverse of salt hydroly	sis is known as:		-		č
	(a) Combustion	(b) neutralizatio	n	(c) fusion	(d) diss	ociation
17.	Which of the following (a) A_1	element cannot (b) Mn	oxidize ł	by hydrogen in g	galvanic ((d) Z n	cell?
18.	If a reaction rate is repro	esented as rate =	k[A] ⁻² [E	B], the reaction's	s order w	ill be:
	(a) 3	(b) -3		(c) 2		(d) -1

Section-B

Item no	Ouestion (Description)	Reference
i	Calculate the number of molecule in 8 cm^3 of CO ₂ ? (C=12, O=16)	KPTBB
		Grade XI
		Page#12,13
Possible	Given	
Answer		
	Volume of $CO_2 = 8 \text{ cm}^3 = 0.08 \text{ dm}^3$	
	Number of molecules of $CO_2 = ?$	
	Solution	
	First we have to calculate number of moles	
	Number of moles of gas =	
	volume(dm ³)at STP	
	<i>molar volume</i> (22.4 <i>dm</i> ³ / <i>mol</i>) <i>at STP</i> (1 mark)	
	$0.00 dm^3$	
	$= \frac{0.08 m^3}{22.4 dm^3/mol}$	
	= 0.000357 mol (1 mark)	
	Number of molecules = no. of moles \times N _A	
	(1 mark)	
	$= 0.000357 \times 6.022 \times 10^{23}$	
	$= 0.002 \times 10^{23}$ (1 mark)	
Marking	1+1+1+1	4
ii	Which one is limiting reagent if 24g of carbon reacts with 32g of	КРТВВ
		Grade XI
	oxygen to form CO_2 ?	Page# 15
	$C + O_2 \rightarrow CO_2$	
Possible	Given	
THISWCI	The balanced chemical equation	
	$C + O_2 \rightarrow CO_2$	
	First we convert the amount of both reactants into moles,	
	Malar mass of earbon = 12c	
	Molar mass of carbon= 12g Molas of $C = 24/12 = 2$ molas (1 mark)	
	Mass of $\alpha x y = 32 \sigma$ (1 mark)	
	Mass of oxygen = $32g$ Molar mass of oxygen = $32g$	
	Moles of $O_2 = 32/32 = 1$ moles (1 marks)	
	Calculation of moles of product (CO ₂) from the number of moles of	
	each reactants.	
	From balanced chemical equation we have,	

	1 mole of $C \cong 1$ mole of CO_2 2 mole of $C \cong 2$ mole of CO_2		
	1 mole of $O_2 \cong 1$ mole of CO_2 (1 mark)		
N. 1.	So oxygen is a limiting reagent (1mark)	4	
Marking	$\frac{1+1+1+1}{1+1+1}$	4 VDTDD	
111	Determine the wave number of photon enfitted when electron jumps	Grade XI	
	from 5 th to 2 nd shell in hydrogen atom?	Page#42	
Possible Answer	<u>Given</u> :		
	$n_1 = 2$ $n_2 = 5$		
	Using formula:		
	$\dot{\upsilon} = 1.09 \times 10^7 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$ (1 mark)		
	$= 1.09 \times 10^7 \left(\frac{1}{2^2} - \frac{1}{5^2}\right) \qquad (1 \text{ mark})$		
	$= 1.09 \times 10^7 \left(\frac{1}{4} - \frac{1}{25}\right)$ (1 mark)		
	$= 0.2289 \times 10^7 m^{-1}$ (1 mark)		
Marking	1+1+1+1	4	
iv	Why in hetero- nuclear molecules, bond length deviates from calculated sum of covalent radii? Justify with the help of an example.	KPTBB Grade XI Page#95	
Possible Answer	For hetero- nuclear diatomic molecules bond length shortened and become deviates from calculated sum of individual covalent radii , due to increase in difference of electro-negativity. (2 marks)		
	Example Experimentally calculated bond length of HCl is 127pm , where as calculated value of atomic radii of H= 37pm and Cl =99pm gives H-Cl bond length equals to 136pm. The calculated values are always higher than experimental values for hetero-nuclear molecules. This is due to the difference in electro-negativity, which produces polarity. This results in the shortening of bond length due to force of attraction between polar ends. (2 marks)		
Marking	2+2	4	
V	Derive ideal gas equation for 3 mol of an ideal gas?	KPTBB Grade XI Page#118	
Possible Answer	Solution It is derived by combining Boyle's, Charles and Avogadro's laws. According to boyle's law $V \propto \frac{1}{p}$ According to Charles law $V \propto T$		
	$\frac{\text{According to Avagadro's law}}{V \propto n} $ (1 mark)		

	By combining these three laws we get,	
	$V \propto \frac{T}{n} n$ (1 mark)	
	$PV \propto nT$	
	$\mathbf{For 3 mol of gas}$	
	$P V = 3 RT \qquad (1 mark)$	
Marking	1+1+1+1	4
vi	A buffer solution is made of CH ₃ COOH and CH ₃ COONa, what	KPTBB
	happens to this solution by the addition of strong acid and strong base?	Grade XI Page#258
Possible Answer	Definition Buffer solution :	1 480.200
	A buffer solution which contains acetic acid and sodium acetate, these two substances has the ability to neutralize the added acid or base.	
	The pH of buffer is governed by equilibrium	
	$CH_3 COOH \Leftrightarrow CH_3 COO^- + H^+$ (1 mark)	
	Sodium acetate a strong electrolyte dissociates in water.	
	$CH_3COONa \Leftrightarrow CH_3COO^- + Na^+$ (1 mark)	
	Addition of strong base When a small amount of strong base is added it will increase the concentration of OH^- . As a result equilibrium shifts towards right to produce more H ⁺ ions till all the excess OH ⁻ ions are neutralized and the original pH of the buffer is restored. (1 mark)	
	Addition of strong acid When a strong acid is added. H ⁺ ion of the acid reacts with acetate ion	
	of the buffer.	
	Both of these reactions go to completion. Hence the added OH^- and H^+ ions are removed and the pH of the buffer solution remains constant. (1 mark)	
Marking	1+1+1+1	4
	What is the role of hydrogen bonding in strength of acid and solubility	KPTBB
	of substances in water?	Grade XI Page#157
vii		1 490//10/
Possible	Role of hydrogen bonding in strength of acid:	
Answer	HE is weaker acid than HCl. HBr and HI because hydrogen atom is	
	entrapped between two highly electronegative atoms in H-F due to	
	hydrogen bonding. (2 marks)	
	Role of hydrogen bonding in solubility	
	Organic substances which forms hydrogen bonds with water molecules,	
	are soluble in water, for example ethyl alcohols miscible with water in	
	molecules of water. (2 marks)	
Marking	2+2	4

viii	5g of NaOH dissolved in water to form 100g of solution calculate molality?	KPTBB Grade XI Page#306	
Possible Answer	$\frac{\text{Given data}}{\text{Given mass of NaOH= 5g}}$ $Molar mass of NaOH= 40g/mol$ $Mass of solvent = 100 - 5 = 95g (1 \text{ mark})$ $As we know,$ $Molality = \frac{mass of substance}{molar mass} \times \frac{mass of solvent}{1000} (1 \text{ Mark})$ $= \frac{5g}{40g/mol} \times \frac{95}{1000} (1 \text{ mark})$		
Marking	- 0.01 mole (1 mark)	Δ	
ix	Write properties of liquid crystals.	KPTBB Grade XI Page#173	
Possible Answer	 Properties of liquid crystals: i. They have some degree of order like crystalline solid. ii. They have fluidity like liquids. iii. They have properties such as surface tension, viscosity etc. like liquids. iv. They have optical properties like crystalline solids. 		
Marking	1+1+1+1		
X	Differentiate between rate of reaction and rate constant?	KPTBB Grade XI Page#271 and 275	
Possible			
Answer	Kate of reaction1) It is change in concentration of reactants or products per unit time.2) its unit is mol L ⁻¹ sec ⁻¹ .3) It can vary over time as reactants are consumed and products are formed.4) it depends upon concentration.4) it depends upon concentration.4) it depends upon concentration.		
Marking	1+1+1+1	4	
xi.	Why hydrogen show positive deviation while carbon dioxide shows negative than positive deviation from ideal behavior.		
Possible Answer	 H2: As H2 is non polar and has small size when the pressure increases it shows only repulsive forces, so it shows positive deviation. (2 Mark) CO2: CO2 is also non polar but due to larger size when pressure increases it shows attractive force initially due to which it shows negative deviation, but further increases in pressure. Molecule of CO2 		

	become very close and show repulsive forces means positive deviation. (2 Mark)	
Marking	1+1+1+1	4
Xii	Define Hess's law. Calculate ΔH sublimation for the given reactions. $H_{2(g)} + I_{2(s)} \rightarrow 2 HI_{(g)} \qquad \Delta H = 51.8 KJ/mol$ $H_{2(g)} + I_{2(g)} \rightarrow 2 HI_{(g)} \qquad \Delta H = -10.5 KJ/mol$	KPTBB Grade XI Page#347
Possible Answer	DefinitionHess's law: Hess's law states that the amount of heat evolved or absorbed in a chemical reaction is the same whether the reaction take place in a single or several step.Calculation of ΔH sublimation $H_{2(g)} + I_{2(s)} \rightarrow 2 HI_{(g)}$ $\Delta H = 51.8KJ/mol$ (1 mark) $2HI_{(g)} \rightarrow H_{2(g)} + I_{2(g)}$ $\Delta H = 10.5KJ/mol$ (1 mark) $I_{2(s)} \rightarrow I_{2(g)}$ $\Delta H = \frac{62.3KJ}{mol}$ (1 mark)	
Marking	1+1+1+1	4
Xiii	Calculate cell voltage for the following reaction. $Cu^{+2} + 2e^- \rightarrow Cu Ered^0 = +0.34$ $Mn^{+2} + 2e^- \rightarrow Mn Ered^0 = -1.03$	KPTBB Grade XI Page#368
Possible Answer Marking	<u>Reaction at anode</u> $Mn \rightarrow Mn^{+2} + 2e^{-} E_{oxid} = -1.03 (1 \text{ mark})$ <u>Reaction at cathode</u> $Cu^{+2} + 2e^{-} \rightarrow Cu E_{red} = +0.34 (1 \text{ mark})$ <u>Cell voltage</u> $E_{cell}^{\circ} = E_{oxi}^{\circ} + E_{red}^{\circ} (1 \text{ mark})$ $= 1.03 + 0.34$ $= 1.37 \text{ V} (1 \text{ mark})$ $1 + 1 + 1 + 1$	4
muning		Г

Section-C	

Item no	Question(Description)	Reference
	Calculate radius of 3 rd and 6 th orbit of hydrogen atom? (4	KPTBB
2.(a)	marks)	Grade XI
		Page#37
Possible	Solution	
answer		
	Radius of 3 rd shell	
	n = 3	
	$r_3 = n^2 (0.529 \text{ A}^\circ)$	

	$= (3)^2 \times (3$	$(0.529 \text{ A}^{\circ})$ $\text{A}^{\circ} \qquad (2 \text{ marl})$	xs)		
	Radius of 6 th shell				
	n = 6				
	$\mathbf{r}_3 = \mathbf{n}^2$	$^{2}(0.529 \text{ A}^{\circ})$			
	= (6	$(0.529 \text{ A})^2 \times (0.529 \text{ A})$	marka)		
Marking	- 1	$\frac{9.0 \text{ A}}{2+2}$	marks)		4
Withing	Complete the	following table.			•
	Total	Types of electron pair	s Name	of Example	
	number of		molecular		
2	electron		shape		KPTBB Creade XI
2.(D)	pair present				Grade XI Page#78 79
					1 agen 70,79
	2	?	Linear	BeCl ₂	
	3	2 bond pair	?	?	
	4	3 bond pair 1 lone pai	r ?	NH ₃	
		1 1		-	
	4	?	angular	H_2O	
Possible	Solution				
answer					
	Total	Types of electron	Name of	Example	
	number of	pairs	molecular		
	electron		shape		
	pan present				
	2	2	Linear	BeCl ₂	
		bond pair 0 lone			
		pair			
	2	2 hand noin	an an lan	SaCh	
	5	2 boliu pair 1 lone pair	angular	511C12	
	4	3 bond pair 1 lone	Trigonal	NH ₃	
		pair	pyramidal		
	4	2 h j in 2 h	1		
	4	2 dond pair 2 lone	angular	H_2O	
Marking		<u>1+1+1+</u>	1+1	1	5
3.(a)	5.6 g of solid	l CO ₂ is put in an em	pty sealed 4.0	OL container at a	a KPTBB
	temperature o	f 300K. When all the s	solid CO ₂ b	becomes gas, what	t Grade XI
D '11	will be pressu	re in this container? ((4 marks)		Page#155,156
Possible	Given Mass of CO	- 5 6a			
answei	Volume = $4I$	viass of $CO_2 = 3.0g$ Volume = $4I_1 = 4dm^3$			
	Temperature =	= 300K			
	Pressure = ?	,			

	First of all calculate moles of CO ₂	
	Number of moles = $\frac{given mass}{molar mass}$	
	$=\frac{5.6}{44}$	
	=0.127mol (1 mark)	
	For calculating pressure using formula	
	PV = nRT where. R=0.0821dm ³ /mol/K (1 mark)	
	$\mathbf{P} = \frac{nRT}{V}$	
	$P = \frac{0.127 \times 0.0821 \times 300}{4} $ (1 mark)	
	= 0.78 atm (1 mark)	
Marking 3 (b)	1+1+1+1 Define unit cell? Write four factors that affect the shape of jonic	4 KPTBB
5.(0)	crystal? (5marks)	Grade XI
Possible answer	<u>Definition</u> <u>Unit cell</u>	Page#197
	The smallest portion of a crystal lattice that shows the three dimensional pattern of the entire lattice is called a unit cell. (1 mark)	
	Factors that affect the shape of ionic crystal	
	(i) Electrostatic force of attraction	
	Ionic crystals are strongly held together due to electrostatic forces. This strength is known as lattice energy. Due to high lattice energy ions are strongly held together and crystal acquires a definite shape. (1 mark)	
	(ii) Radius ratio The coordination number of ionic compounds is related with relative size of cation and anion, called as radius ratio which is the ratio of size of cation to that of anion.e.g. for NaCl the radius ratio of Na ⁺ to Cl ⁻ is 0.54 which has coordination number of 6 and acquire an octahedral crystal structure. (1 mark) (iii) Effect of temperature	
	A perfect crystal would acquire cooling of liquid phase at a very slow rate so as to allow ions to find their proper position in lattice. In this way proper temperature has significant impact upon crystal formation. (1 mark)	
	(iv) Effect of impurity	
	If there are impurities in solution from which the crystallization of a substance is to be carried out, the resulting crystal will have defects,	

	called crystal defect. These impurity particles will fit into holes of the	
Marking	crystal lattice causing a defect in crystal structure. (1 mark) $1+1+1+1$	5
4.(a)	When 50cm ³ of 1 molar HCl is added into 1 molar of NaOH the temperature raised from 21.0 to 27.5 0C . Determine the enthalpy of neutralization. (Specific heat capacity of H ₂ O IS 4.2Jg ^{-1k} k ⁻¹) (4 marks)	KPTBB Grade XI Page#346
Possible answer	Solution 1. <u>Calculate Moles of HCl / NaOH</u>	
	No. of moles of HCl = $\frac{50}{1000} \times 1 = 0.05 mol$	
	No. of moles of NaOH = $\frac{50}{1000} \times 1 = 0.05 mol$ (1mark)	
	Total volume of solution= $50+50=100$ cm ³ Using density of water = 1gm/cm ³ Mass of solution= dv= $1 \times 100 = 100g$ (1 mark)	
	2. <u>Calculate heat of neutralization</u>	
	Heat of neutralization= $m \times \Delta t \times c_w$	
	$= 100g \times 6.5 \times 4.2$	
	= 2730 J / 0.05 mol (1 mark)	
	3. <u>Conversion</u>	
	For 1 mol = $\frac{2730J}{0.05mol} \times 1mol$	
	= - 54600J	
	$= -54.6 \text{KJ/mol} \qquad (1 \text{mark})$	
Marking	1+1+1+1	4
4.(b)	Define ionic product and solubility product constant? What information we got from ionic and solubility product constant? (5marks)	KPTBB Grade XI Page#227
Possible answer	DefinitionSolubility product (K_{sp})The solubility product of a substance is the product of molar concentrations of its ions in the saturated solution each raised to an exponent equal to the coefficient of each ion in the balanced equation. (1mark)Ionic product (IP)It is the product of concentrations of ions of electrolyte at any concentration of solution each raised to the power of their coefficient in the balanced chemical equation. (1mark)Information we get is as follows:(1) IP= K_sp	
	Ionic product (IP)It is the product of concentrations of ions of electrolyte at any concentration of solution each raised to the power of their coefficient in the balanced chemical equation. (1mark)Information we get is as follows:(1) IP= K_{sp}	

	When actual amount of ions in solution is maximum, the resulting solution will be saturated but there is no precipitation. (1 mark)(2) IP < K_{sp} When actual amount of ions in solution is less than equilibrium concentration, the resulting solution will be unsaturated but there is no precipitation. (1 mark)(3) IP > K_{sp} When actual amount of ions is more than equilibrium concentration, the resulting solution. (1 mark)(1 mark)(1 mark)(3) IP > K_{sp} When actual amount of ions is more than equilibrium concentration, the resulting solution will be supersaturated and it accommodating more ions that it can keep in solution. (1 mark)	
Marking	1+1+1+1=1	5
5.(a)	What do you know about freezing point depression? Justify your answer with the help of graph? (5marks)	KPTBB Grade XI Page#316
	Definition	
	Freezing point depression	
	The freezing point of a liquid is a temperature at which solid phase begins to separate out from the liquid phase. (1 mark)	
	Graphical representation	
	Atmospheric B Liquid solution Pressure solution C E Freezing point depression T ₁ T ₁ ° Temperature (K)	
	(2 marks)	
	<u>Explanation</u>	
	Above graph shows the vapour pressure of solution and pure solvent as a function of temperature.	
	Where,	
	T_1° represents the freezing point of pure solvent T_1 represents the freezing point of solution	
	Hence,	

	$\Delta T_f = T_1 - T_1$	
	where,	
	ΔT_f , is the depression in freezing point. (2 marks)	
Marking	1+2+2	5
5.(b)	Balance following equation by half -cell reaction method? (4 marks)	KPTBB
	$S_2 O_3^{-2} + OCl^{-1} \rightarrow Cl^- + S_4 O_6^{-2}$ (ACIDIC MEDIUM)	Grade XI
D 111		Page#363
Possible	<u>Given</u>	
answer	$S_2 O_3^{-2} + OCl^{-1} \rightarrow Cl^- + S_4 O_6^{-2}$ (ACIDIC MEDIUM)	
	<u>Solution</u>	
	(i)Balance the atoms other than oxygen and hydrogen	
	$2 S_2 O_3^{-2} \rightarrow S_4 O_6^{-2}$	
	$OCl^{-1} \longrightarrow Cl^{-}$ (1 mark)	
	(ii) In acidic medium $H^{\scriptscriptstyle +}$ ion is used for greater number of oxygen and H_2O can be added to other side.	
	$2 S_2 O_3^{-2} \rightarrow S_4 O_6^{-2}$	
	$2H^+ + OCl^{-1} \rightarrow Cl^- + H_2O \qquad (1 \text{ mark})$	
	(iii) Multiply each half reaction by a number chosen so that the total number of electrons lost by reducing agent becomes equal electrons gained by the oxidizing agent.	
	$2 S_2 O_3^{-2} \to S_4 O_6^{-2} + 2e^-$	
	$2e^{-} + 2H^{+} + OCl^{-1} \rightarrow Cl^{-} + H_2O$ (1 mark) (iv) After multiplication by cancel similar things on both sides in the net equation we got final balance chemical equation.	
	$2S_2O_3^{-2} + 2H^+ + OCl^{-1} \rightarrow S_4O_6^{-2} + Cl^- + H_2O$ (1 mark)	
Marking	1+1+1+1	4